If tanA+tanB=a and cotA+cotB=b, then prove that cot(A+B)=1/a-1/b
September 08, 2021
Steps to prove cot(A+B)=1/a-1/b
R.H.S
=1/a-1/b
=1/(tanA+tanB)-1/(cotA+cotB)
=1/(1/cotA+1/cotB)-1/(cotA+cotB)
=cotA.cotB/(cotB+cotA)-1/(cotA+cotB)
=(cotA.cotB-1)/(cotB+cotA)
=cot(A+B)
L.H.S
Hence cot(A+B)=1/a-1/b is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?