Find the derivative of d{(tanx-cosx)/sinx.cosx}/dx
October 11, 2021
Steps to solve Find the derivative of d{(tanx-cosx)/sinx.cosx}/dx
=(tanx-cosx)/sinx.cosx
={(sinx/cosx)-cosx}/sinx.cosx
={(sinx/sinx.cos^2x)-(cos^2x/sinx.cos^2x)}
=(1/cos^2x)-(1/sinx)
=(sec^2x-cosecx)
Hence the derivative is
=d(sec^2x-cosecx)/dx
=d(sec^2x)/dx-d(cosecx)/dx
=2secx(secx+tanx)+cosecx.cotx
=2sec^2x.tanx+cosecx.cotx
Hence the derivative of d{(tanx-cosx)/sinx.cosx}/dx is 2sec^2x.tanx+cosecx.cotx
Detail Information:-
Similar Questions For You:-
dfg
ReplyDeletennwtn
DeleteDon't Get Panic Ask Any Doubt or Any Questions ?