Find the derivative of d{x^2(log2^x)+secx}
October 10, 2021
Steps to solve Find the derivative of d{x^2(log2^x)+secx}/dx
=d{x^2(log2^x)+secx}/dx
=d{x^2(log2^x)}/dx+dsecx/dx
=x^2{d(log2^x)/dx}+(log2^x)(dx^2/dx)+(dsecx/dx)
=(x^2/xln2)+(log2^x)(2x)+secx.tanx
=(x/ln2)+(log2^x)(2x)+secx.tanx
Hence the derivative of d{x^2(log2^x)+secx} is (x/ln2)+(log2^x)(2x)+secx.tanx
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?