If (1-e)tan^2(β/2)=(1+e)tan^2(α/2), then prove that cosβ=(cosα-e)/(1-ecosα)
September 08, 2021
Steps to prove cosβ=(cosα-e)/(1-ecosα)
From Question
⇒(1-e)tan^2(β/2)=(1+e)tan^2(α/2)
⇒tan^2(β/2)={(1+e)/(1-e)}tan^2(α/2)
L.H.S
=cosβ
={1-tan^2(β/2)}/{1+tan^2(β/2)}
=[1-{(1+e)/(1-e)}tan^2(α/2)]/[1+{(1+e)/(1-e)}tan^2(α/2)]
=[(1-e)-{tan^2(α/2)+etan^2(α/2)}]/[(1-e)+{tan^2(α/2)+etan^2(α/2)}]
={1-tan^2(α/2)-e-etan^2(α/2)}/{1+tan^2(α/2)-e+etan^2(α/2)
Dividing 1+tan^2(α/2) both numenetor and denomenator
=[{1-tan^2(α/2)}/{1+tan^2(α/2)}-e{1+tan^2(α/2)}/{1+tan^2(α/2)}]/[{1+tan^2(α/2)}/{1+tan^2(α/2)}-e{1-tan^2(α/2)}/{1+tan^2(α/2)}]
=(cosα-e)/(1-ecosα)
=R.H.S
Hence cosβ=(cosα-e)/(1-ecosα) is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?