An angle θ is divide into two parts α,β such that tanα:tanβ=x:y then prove that sin(α-β)={(x-y)/(x+y)}sinθ
September 08, 2021
Steps to prove sin(α-β)={(x-y)/(x+y)}sinθ
From Question We know that
⇒tanα:tanβ=x:y
⇒tanα/tanβ=x/y
⇒(sinα/cosα)/(sinβ/cosβ)=x/y
⇒(sinα.cosβ)/(cosβ.sinα)=x/y
By componendo and dividendo
⇒{(sinα.cosβ)+(cosα.sinβ)}/{(cosβ.sinα)-(cosα.sinβ)}=(x+y)/(x-y)
⇒sin(α+β)/sin(α-β)=(x+y)/(x-y)
⇒sinθ/sin(α-β)=(x+y)/(x-y)
⇒sin(α-β)={(x-y)/(x+y)}sinθ
Hence sin(α-β)={(x-y)/(x+y)}sinθ is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?