Find the general solution for cos2θ=(√2+1)(cosθ-1/√2)
September 28, 2021
Steps to solve find the general solution for cos2θ=(√2+1)(cosθ-1/√2)
⇒cos2θ=(√2+1)(cosθ-1/√2)
⇒2cos^2θ-1=(√2+1)cosθ-(√2+1)/√2
⇒2cos^2θ-(√2+1)cosθ+(√2+1)/√2-1=0
⇒2cos^2θ-(√2+1)cosθ+(√2+1-√2)/√2=0
⇒2cos^2θ-(√2+1)cosθ+1/√2=0
Here a=2, b=√2+1, c=1/√2
cosθ={-b±√(b^2-4ac)}/2a={(√2+1)±(√2-1)}/4
⇒cosθ={(√2+1)+(√2-1)}/4 OR cosθ={(√2+1)-(√2-1)}/4
⇒cosθ=2√2/4 OR cosθ=1/2
⇒cosθ=1/√2 OR cosθ=1/2
⇒θ=π/4 OR θ=π/3
⇒θ=2nπ±π/θ OR ⇒θ=2nπ±π/3
Hence the general solutions for cos2θ=(√2+1)(cosθ-1/√2) are θ=2nπ±π/θ OR θ=2nπ±π/3
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?