Find the general solution for cot^2θ-tan^2θ=4cot2θ
September 28, 2021
Steps to solve find the general solution for cot^2θ-tan^2θ=4cot2θ
⇒cot^2θ-tan^2θ=4cot2θ
⇒(1-tan^2θ)/tan^2θ=4/tan2θ
⇒(1-tan^2θ)(1+tan^2θ)=4tan^2θ(1-tan^2θ)/tan2θ
⇒tanθ(1-tan^2θ)(1+tan^2θ)-2tan^2θ(1-tan^2θ)=0
⇒tanθ(1-tan^2θ)(1+tan^2θ-2tanθ)=0
⇒tanθ(1-tan^2θ)(1-tan^2θ)^2=0
⇒tanθ(1-tan^2θ)^3(1+tanθ)=0
⇒tanθ=0, tanθ=1, tanθ=-1
⇒θ=nπ, θ=nπ+π/4, θ=nπ-π/4
Hence the general solutions of cot^2θ-tan^2θ=4cot2θ are θ=nπ, θ=nπ+π/4, θ=nπ-π/4
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?