Prove that sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=1-2.sin(A/2)sin(B/2).sin(C/2)
September 09, 2021
Steps to prove sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=1-2.sin(A/2)sin(B/2).sin(C/2)
L.H.S
=sin^2(A/2)+sin^2(B/2)+sin^2(C/2)
=(1-cosA)/2+(1-cosB)/2+(1-cosC)/2
=(1-cosA+1-cosB+1-cosC)/2
={3-(cosA+cosB+cosC)}/2
=(1/2)[3-{2.cos(A+B)/2.cos(A-B)/2+1-2sin^2(c/2)}]
=(1/2)[3-2.cos(A+B)/2.cos(A-B)/2-1+2sin^2(c/2)}]
=(1/2)[2-2sin(C/2){cos(A-B)/2-cos(A+B)/2}]
=(1/2).2[1-sin(C/2){cos(A-B)/2-cos(A+B)/2}]
=1-sin(C/2){cos(A/2-B/2)-cos(A/2+B/2)}
=1-2.sin(A/2)sin(B/2).sin(C/2)
Hence sin^2(A/2)+sin^2(B/2)+sin^2(C/2)=1-2.sin(A/2)sin(B/2).sin(C/2) is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?