Find the derivative of d(x^3)(sinx){e^(4lnx)}/dx
October 10, 2021
Steps to solve Find the derivative of d(x^3)(sinx){e^(4lnx)}/dx
=(x^3)(sinx){e^(4lnx)}
=(x^3)(sinx){e^(lnx^4)}
=(x^3)(sinx)(x^4)
=(x^7)(sinx)
Hence
=d(x^7)(sinx)/dx
=(sinx)(dx^7/dx)+(x^7)(dsinx/dx)
=sinx(7x^6)+(x^7)cosx
=x^6{7.sinx+x.cosx}
Hence the derivative of d(x^3)(sinx){e^(4lnx)}/dx is x^6{7.sinx+x.cosx}
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?