Find the derivative of d(x^3)(sinx){e^(4lnx)}/dx

Steps to solve Find the derivative of d(x^3)(sinx){e^(4lnx)}/dx


=(x^3)(sinx){e^(4lnx)}

=(x^3)(sinx){e^(lnx^4)}

=(x^3)(sinx)(x^4)

=(x^7)(sinx)

Hence

=d(x^7)(sinx)/dx

=(sinx)(dx^7/dx)+(x^7)(dsinx/dx)

=sinx(7x^6)+(x^7)cosx

=x^6{7.sinx+x.cosx}

Hence the derivative of d(x^3)(sinx){e^(4lnx)}/dx is x^6{7.sinx+x.cosx}

Detail Information:-

Find the derivative of d(x^3)(sinx){e^(4lnx)}/dx


Similar Questions For You:-

Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.