Prove that tan4θ=(4tanθ-4tan^3θ)/(1-6tan^2θ+tan^4θ)
September 04, 2021
Steps to prove tan4θ=(4tanθ-4tan^3θ)/(1-6tan^2θ+tan^4θ)
L.H.S
=tan4θ
=tan(3θ+θ)
=(tan3θ+tanθ)/(1-tan3θ.tan^θ)
[tan3A=(3tanA-tan^3A)/(1-3tan^2A)]
={(3tanθ-tan^3θ)/(1-3tan^2θ)+tanθ}/{1-(3tanθ-tan^3θ)/(1-3tan^2θ).tan^θ}
={(3tanθ-tan^3θ+tanθ-3tan^3θ)/(1-3tan^2θ)}/{(1-3tan^2θ-3tan^2θ+tan^4θ)/(1-3tan^2θ)}
=(3tanθ-tan^3θ+tanθ-3tan^3θ)/(1-3tan^2θ-3tan^2θ+tan^4θ)
=(4tanθ-4tan^3θ)/(1-6tan^θ+tan^4θ)
=R.H.S
Hence tan4θ=(4tanθ-4tan^3θ)/(1-6tan^2θ+tan^4θ) is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?