Prove that {cotA/(cotA-cot3A)}-{tanA/(tan3A-tanA)}=1

Steps to prove {cotA/(cotA-cot3A)}-{tanA/(tan3A-tanA)}=1


L.H.S

={cotA/(cotA-cot3A)}-{tanA/(tan3A-tanA)}

={(1/tanA)/(1/tanA-1/tan3A)}-{tanA/(tan3A-tanA)}

=(1/tanA).(tan3A.tanA/tan3A-tanA)-tanA/(tan3A-tanA)

=tan3A/(tan3A-tanA)-tanA/(tan3A-tanA)

=(tan3A-tanA)/(tan3A-tanA)=1

=R.H.S

Hence {cotA/(cotA-cot3A)}-{tanA/(tan3A-tanA)}=1 is proved.

Detail Information:-

Prove that {cotA/(cotA-cot3A)}-{tanA/(tan3A-tana)}=1


Similar Questions For You:-

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.