Prove that {cotA/(cotA-cot3A)}-{tanA/(tan3A-tanA)}=1
September 04, 2021
Steps to prove {cotA/(cotA-cot3A)}-{tanA/(tan3A-tanA)}=1
L.H.S
={cotA/(cotA-cot3A)}-{tanA/(tan3A-tanA)}
={(1/tanA)/(1/tanA-1/tan3A)}-{tanA/(tan3A-tanA)}
=(1/tanA).(tan3A.tanA/tan3A-tanA)-tanA/(tan3A-tanA)
=tan3A/(tan3A-tanA)-tanA/(tan3A-tanA)
=(tan3A-tanA)/(tan3A-tanA)=1
=R.H.S
Hence {cotA/(cotA-cot3A)}-{tanA/(tan3A-tanA)}=1 is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?