If x+y+z=xyz then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=xyz/{(1-x^2)(1-y^2)(1-z^2)}
September 09, 2021
Steps to prove x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=xyz/{(1-x^2)(1-y^2)(1-z^2)}
Let us consider
x=tanα, y=tanβ, z=tanγ
⇒x+y+z=xyz
⇒tanα+tanβ+tanγ=tanα.tanβ.tanγ
⇒tanα+tanβ=tanα.tanβ.tanγ-tanγ
⇒tanα+tanβ=tanγ(tanα.tanβ-1)
⇒(tanα+tanβ)/(1-tanα.tanβ)=-tanγ
⇒tan(α+β)=-tanγ
⇒tan(α+β)=tan(pi-γ)
⇒α+β=pi-γ
⇒2α+2β=2pi-2γ
⇒tan(2α+2β)=tan(2pi-2γ)
⇒(tan2α+tan2β)/(1-tan2α.tan2β)=-tan2γ
⇒tan2α+tan2β+tan2γ=tan2α.tan2β.tan2γ
⇒2x/(1-x^2)+2y/(1-y^2)+2z/(1-z^2)=2x/(1-x^2).2y/(1-y^2).2z/(1-z^2)
⇒x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=xyz/{(1-x^2)(1-y^2)(1-z^2)}
Hence x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=xyz/{(1-x^2)(1-y^2)(1-z^2)} is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?