Prove that cos^2(A/2)+cos^2(B/2)+cos^2(C/2)=2.cos(A/2)cos(B/2).sin(C/2)
September 09, 2021
Steps to prove cos^2(A/2)+cos^2(B/2)+cos^2(C/2)=2.cos(A/2)cos(B/2).sin(C/2)
L.H.S
=cos^2(A/2)+cos^2(B/2)+cos^2(C/2)
=(1+cosA)/2+(1+cosB)/2-(1+cosC)/2
=(1+cosA+1+cosB-1-cosC)/2
=(1+cosA+cosB-cosC)/2
=1/2+(cosA+cosB-cosC)/2
=1/2+1/2{2.sin(C/2).cos(A-B)/2-1+2sin^2(C/2)}
=1/2+1/2[2.sin(C/2).{cos(A-B)/2+sin(C/2)}-1]
=1/2+1/2[2.sin(C/2).2cos(A/2).cos(B/2)-1]
=1/2+2.cos(A/2)cos(B/2).sin(C/2)-1/2
=2.cos(A/2)cos(B/2).sin(C/2)
R.H.S
Hence cos^2(A/2)+cos^2(B/2)+cos^2(C/2)=2.cos(A/2)cos(B/2).sin(C/2) is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?