If sinA=ksinB, Prove that tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B)
September 05, 2021
Steps to prove if sinA=ksinB, Prove that tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B)
From Question given that
⇒sinA=ksinB
⇒sinA/sinB=k/1
⇒(sinA+sinB)/(sinA-sinB)=(K+1)/(k-1)
⇒{2.sin(A+B)/2.cos(A-B)/2}/{2.cos(A+B)/2.cos(A-B)/2}=(K+1)/(k-1)
⇒tan(A+B)/2.cot(A-B)/2=(K+1)/(k-1)
⇒(K-1)/(k+1)tan(A+B)/2=1/cot(A-B)/2
⇒tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B)
Hence tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B) is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?