If sinA=ksinB, Prove that tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B)

Steps to prove if sinA=ksinB, Prove that tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B)


From Question given that

sinA=ksinB

sinA/sinB=k/1

(sinA+sinB)/(sinA-sinB)=(K+1)/(k-1)

{2.sin(A+B)/2.cos(A-B)/2}/{2.cos(A+B)/2.cos(A-B)/2}=(K+1)/(k-1)

tan(A+B)/2.cot(A-B)/2=(K+1)/(k-1)

(K-1)/(k+1)tan(A+B)/2=1/cot(A-B)/2

tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B)

Hence tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B) is proved.

Detail Information:-

If sinA=ksinB, Prove that tan(1/2)(A-B)=(k-1)/(k+1)tan(1/2)(A+B)

Similar Questions For You:-

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.