If acos(x+α)=bcos(x-α) show that (a+b)tanx=(a-b)cotα
September 05, 2021
Steps to prove If acos(x+α)=bcos(x-α) show that (a+b)tanx=(a-b)cotα
From Question given that
⇒acos(x+α)=bcos(x-α)
By componendo and dividendo
⇒(a+b)/(a-b)={cos(x-α)+cos(x+α)}/{cos(x+α)+cos(x-α)}
⇒(a+b)/(a-b)=2.cosx.cosα/2.sinx.cosα
⇒(a+b)/(a-b)=cotx.cotα
⇒(1/cotx)(a+b)=(a-b)cotα
⇒(a+b)tanx=(a-b)cotα
Hence (a+b)tanx=(a-b)cotα is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?