If acos(x+α)=bcos(x-α) show that (a+b)tanx=(a-b)cotα

Steps to prove If acos(x+α)=bcos(x-α) show that (a+b)tanx=(a-b)cotα


From Question given that

acos(x+α)=bcos(x-α)

By componendo and dividendo

(a+b)/(a-b)={cos(x-α)+cos(x+α)}/{cos(x+α)+cos(x-α)}

(a+b)/(a-b)=2.cosx.cosα/2.sinx.cosα

(a+b)/(a-b)=cotx.cotα

(1/cotx)(a+b)=(a-b)cotα

(a+b)tanx=(a-b)cotα

Hence (a+b)tanx=(a-b)cotα is proved.

Detail Information:-

If acos(x+α)=bcos(x-α) show that (a+b)tanx=(a-b)cotα

Similar Questions For You:-

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.