If cotθ=cos(x+y) and cotΦ=cos(x-y) show that tan(θ-Φ)=2.sinx.siny/(cos^2x+cos^2y)
September 07, 2021
Steps to prove tan(θ-Φ)=2.sinx.siny/(cos^2x+cos^2y)
L.H.S
=tan(θ-Φ)
=(tanθ-tanΦ)/(1-tanθ.tanΦ)
=(1/cotθ-1/cotΦ)/(1-1/cotθ.1/cotΦ)
=(cotΦ-cotθ)/(cotθ.cotΦ+1)
={cos(x-y)-cos(x+y)}/{cos(x-y).cos(x+y)+1}
=2sinx.siny/(cos^2x-sin^2y+1)
=2sinx.siny/(cos^2x+1-sin^2y)
=2.sinx.siny/(cos^2x+cos^2y)
R.H.S
Hence tan(θ-Φ)=2.sinx.siny/(cos^2x+cos^2y) is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?