Prove that tan37(1/2)=√6+√3-√2-2
September 05, 2021
Steps to prove tan37(1/2)=√6+√3-√2-2
L.H.S
=tan37(1/2)
=tan(75/2)
=(1-cos75)/sin75
={1-(√3-1/2√2)}/(√3+1/2√2)
=(2√2-√3+1)/(√3-1)
=(2√2-√3+1)(√3-1)/(√3+1)(√3-1)
=(2√6+2√3-2√2-4)/3-1
=(2√6+2√3-2√2-4)/2
=2(√6+√3-√2-2)/2
=√6+√3-√2-2
=R.H.S
Hence tan37(1/2)=√6+√3-√2-2 is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?