If 2tanα=3tanβ than prove that tanβ/(2+3tan^2β)
September 07, 2021
Steps to prove tan(α-β)=sin2β/(5-cos2β)
L.H.S
=tan(α-β)
=(tanα-tanβ)/(1+tanα.tanβ)
={(3/2)tanβ-tanβ}/{1+(3/2)tanβ.tanβ}
={(3tanβ-2tanβ)/2}/(2+3tan^2β)
=tanβ/(2+3tan^2β)
R.H.S
=sin2β/(5-cos2β)
={2tanβ/(1+tan^2β)}/{5-(1-tan^2β)/(1+tan^2β)}
={2tanβ/(1+tan^2β)}/[{5(1+tan^2β)-(1-tan^2β)}/(1+tan^2β)
=2tanβ/(4+6tan^2β)
=tanβ/(2+3tan^2β)
Hence L.H.S=R.H.S
tanβ/(2+3tan^2β) is proved.
Detail Information:-
Similar Questions For You
Don't Get Panic Ask Any Doubt or Any Questions ?