If A+B+C= π than prove that sinA+sinB-sinC=4.sin(1/2)A.sin(1/2)B.cos(1/2)C
September 08, 2021
Steps to prove sinA+sinB-sinC=4.sin(1/2)A.sin(1/2)B.cos(1/2)C
L.H.S
=sinA+sinB-sinC
=2sin(A+B)/2.cos(A-B)/2-2sinC/2.cosC/2
=2cosC/2.cos(A-B)/2-2sinC/2.cosC/2 [sin(A+B)/2=cosC/2]
=2cosC/2{cos(A-B)/2-sinC/2}
=2cosC/2{cos(A-B)/2-cos(A+B)/2} [sinC/2=cos(A+B)/2]
=2cosC/2.2.sinA/2.cosA/2
=4.sin(1/2)A.sin(1/2)B.cos(1/2)C
=R.H.S
Hence sinA+sinB-sinC=4.sin(1/2)A.sin(1/2)B.cos(1/2)C is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?