If A+B+C= π than prove that cosA+cosB+cosC=1+4.sin(1/2)A.sin(1/2)B.sin(1/2)C
September 08, 2021
Steps to prove cosA+cosB+cosC=1+4.sin(1/2)A.sin(1/2)B.sin(1/2)C
L.H.S
=cosA+cosB+cosC
=2.cos(A+B)/2.cos(A-B)/2+(1-2sin^2C/2)
=2.sinC/2.cos(A-B)/2+1-2sin^2C/2 [sinC/2=cos(A+B)/2]
=2sinC/2{cos(A/2-B/2)-cos(A/2+B/2)}+1
=2sinC/2.2sinA/2.sinB/2+1
=1+4.sin(1/2)A.sin(1/2)B.sin(1/2)C
=R.H.S
Hence cosA+cosB+cosC=1+4.sin(1/2)A.sin(1/2)B.sin(1/2)C is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?