If α,β are acute angles and cos2α=(3cos2β-1)/(3-cos2β) than prove that tanα=√2tanβ
September 07, 2021
Steps to prove tanα=√2tanβ
We know that
⇒cos2α=(3cos2β-1)/(3-cos2β)
⇒(1-tan^2α)/(1+tan^2α)={3-(1-tan^2β)/(1+tan^2β)-1}/{3-(1-tan^2β)/(1+tan^2β)}
⇒(1-tan^2α)/(1+tan^2α)=(2-4tan^2β)/(2+4tan^2β)
⇒(1-tan^2α)/(1+tan^2α)=(1-2tan^2β)/(1+2tan^2β)
⇒{(1-tan^2α)+(1+tan^2α)}/{(1-tan^2α)-(1+tan^2α)}={(1-2tan^2β)+(1+2tan^2β)}/{(1-2tan^2β)+(1+2tan^2β)}
⇒2/(-2tan^2α)=2/(-4tan^2β)
⇒1/(tan^2α)=1/(2tan^2β)
⇒tan^2α=rt2tan^2β
⇒L.H.S=R.H.S
Hence tanα=√2tanβ is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?