Prove that secA+tanA=(1+tanA/2)/(1-tanA/2)
August 17, 2021
Steps to prove secA+tanA=(1+tanA/2)/(1-tanA/2)
Take L.H.S
=secA+tanA
=1/cosA+sinA/cosA
=1+sinA/cosA [Taking L.C.M]
We know that sin^2A/2+cos^2A/2=1
and 2.sinA/2.cosA/2=sinA
and cos^2A/2-sin^2A/2=cosA
=(sin^2A/2+cos^2A/2+2.sinA/2.cosA/2)/(cos^2A/2-sin^2A/2)
=(cosA/2+sinA/2)^2/(cosA/2+sinA/2)(cosA/2-sinA/2)
=(cosA/2+sinA/2)/(cosA/2-sinA/2)
Dividing cosA/2 in both Numenitor and Denomenitor
={(cosA/2+sinA/2)/cosA/2}/{(cosA/2-sinA/2)/cosA/2}
=(1+tanA/2)/(1-tanA/2)
=R.H.S
Hence secA+tanA=(1+tanA/2)/(1-tanA/2) is proved.
Detail Information:-
Similar questions for you:-
Don't Get Panic Ask Any Doubt or Any Questions ?