Steps to prove secθ+tanθ=tan(π/4+θ/2)
Take L.H.S
=secθ+tanθ
=1/cosθ+sinθ/cosθ
=1+sinθ/cosθ [Taking L.C.M]
We know that sin^2θ/2+cos^2θ/2=1
and 2.sinθ/2.cosθ/2=sinθ
and cos^2θ/2-sin^2θ/2=cosθ
=(sin^2θ/2+cos^2θ/2+2.sinθ/2.cosθ/2)/(cos^2θ/2-sin^2θ/2)
=(cosθ/2+sinθ/2)^2/(cosθ/2+sinθ/2)(cosθ/2-sinθ/2)
=(cosθ/2+sinθ/2)/(cosθ/2-sinθ/2)
Dividing cosθ/2 in both Numenitor and Denomenitor
={(cosθ/2+sinθ/2)/cosθ/2}/{(cosθ/2-sinθ/2)/cosθ/2}
=(1+tanθ/2)/(1-tanθ/2)
=(tanπ/4+tanθ/2)/(1-tanπ/4.tanθ/2) [tanπ/4=1]
=tan(π/4+θ/2)
=R.H.S
Hence secθ+tanθ=tan(π/4+θ/2) is proved
Don't Get Panic Ask Any Doubt or Any Questions ?