Prove that √(1-sinA)/(1+sinA)=tan(π/4+A/2)
August 17, 2021
Steps to prove √(1-sinA)/(1+sinA)=tan(π/4+A/2)
Take L.H.S
=√(1-sinA)/(1+sinA)
=√(cos^2A/2+sin^2A/2+2sinAcosA/2)/(cos^2A/2+sin^2A/2+2sinAcosA/2)
={(cosA/2+sinA/2)/cosA/2}/{(cosA/2-sinA/2)/cosA/2}
=(1+tanA/2)/(1-tanA/2)
=(tanπ/4+tanA/2)/(1-tanπ/4.tanA/2) [tanπ/4=1]
=tan(π/4+A/2)
=R.H.S
Hence √(1-sinA)/(1+sinA)=tan(π/4+A/2) is Proved
Detail Information:-
Similar questions for you:-
Don't Get Panic Ask Any Doubt or Any Questions ?