Prove that sinA+sinB/sinA-sinB=tan(A+B)/2.cot(A+B)/2
August 13, 2021
Steps to prove sinA+sinB/sinA-sinB=tan(A+B)/2.cot(A+B)/2
Take L.H.S sinA+sinB/sinA-sinB
=sinA+sinB/sinA-sinB
=2sin(A+B)/2.cos(A-B)/2/2cos(A+B)/2.sin(A-B)/2
=sin(A+B)/cos(A+B).cos(A-B)/sin(A-B)
=tan(A+B)/2.cot(A-B)/2
=R.H.S
Hence sinA+sinB/sinA-sinB=tan(A+B)/2.cot(A+B)/2 is proved
Similar questions for you:-
Don't Get Panic Ask Any Doubt or Any Questions ?