Prove that sin^4θ=3/8-(1/2)cos2θ+(1/8)cos4θ
September 05, 2021
Steps to prove sin^4θ=3/8-(1/2)cos2θ+(1/8)cos4θ
L.H.S
=sin^4θ
=(sin^2θ)^2
={(1-cos2θ)/2}^2
=(1/4)(1-cos2θ)^2
=(1/4)[(1)^2+cos^2(2θ)-2.1.cos2θ]
=(1/4){1-2cos2θ+(1+cos4θ)/2}
=1/4-2cos2θ/4+(1+cos4θ)/8
=1/4-2cos2θ/4+1/8+cos4θ/8
=(2+1-4cos2θ+cos4θ)/8
=3/8-(1/2)cos2θ+(1/8)cos4θ
=R.H.S
Hence sin^4θ=3/8-(1/2)cos2θ+(1/8)cos4θ is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?