Prove that cos^6A+sin^6A=(1/4)(1+3cos^2(2A))
September 05, 2021
Steps to prove cos^6A+sin^6A=(1/4)(1+3cos^2(2A))
L.H.S
=cos^6A+sin^6A
=(cos^2A)^3+(sin^2A)^3
=(cos^2A-sin^2A){(cos^2A)^2+(sin^2A)^2-cos^2A.sin^2A}
={(cos^2A+sin^2A)^2-2cos^2A.sin^2A-cos^2A.sin^2A}
={1-3sin^2A.cos^2A}
={1-(3/4)(2sinA.cosA)^2}
={1-(3/4)sin^2(2A)}
={1-(3/4)(1-cos^2(2A))}
=1-(3/4)+(3/4)cos^2(2A)
=(4-3)/4+(3/4)cos^2(2A)
=(1/4)(1+3cos^2(2A))
=R.H.S
Hence cos^6A+sin^6A=(1/4)(1+3cos^2(2A)) is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?