If (1+sinA)/cosA=√2+1, then find the value of (1-sinA)/cosA

 Steps to solve If (1+sinA)/cosA=√2+1, then find the value of (1-sinA)/cosA


⇒(1+sinA)/cosA=√2+1

⇒{(1+sinA)/cosA}{(1-sinA)/cosA}=√2+1{(1-sinA)/cosA}

⇒{(1-sin^2A)/cos^2A}=√2+1{(1-sinA)/cosA}

⇒{cos^2A/cos^2A}=√2+1{(1-sinA)/cosA}

⇒(1-sinA)/cosA=1/(√2+1)

Hence the value of (1-sinA)/cosA is (1-sinA)/cosA=1/(√2+1)

Detail Information:-

If (1+sinA)/cosA=√2+1, then find the value of (1-sinA)/cosA


Similar Questions For You:-

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.