If (1+sinA)/cosA=√2+1, then find the value of (1-sinA)/cosA
September 24, 2021
Steps to solve If (1+sinA)/cosA=√2+1, then find the value of (1-sinA)/cosA
⇒(1+sinA)/cosA=√2+1
⇒{(1+sinA)/cosA}{(1-sinA)/cosA}=√2+1{(1-sinA)/cosA}
⇒{(1-sin^2A)/cos^2A}=√2+1{(1-sinA)/cosA}
⇒{cos^2A/cos^2A}=√2+1{(1-sinA)/cosA}
⇒(1-sinA)/cosA=1/(√2+1)
Hence the value of (1-sinA)/cosA is (1-sinA)/cosA=1/(√2+1)
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?