Find the general solutions for 3sinx+4cosx=5
September 22, 2021
Steps to solve Find the general solutions for 3sinx+4cosx=5
⇒3sinx+4cosx=5
Put 3=rcosθ and 4=rsinθ
⇒3^2.4^2=r^2cos^2θ+r^2sin^2θ
⇒25=r^2(cos^2θ+sin^2θ)
⇒r^2=25
⇒r=±5
tanθ=rsinθ/rcosθ=4/3
⇒θ=tan^(-1)(4/3)
⇒3sinx+4cosx=5
⇒rcosθ.sinx+rsinθ.cosx=5
⇒sin(x+θ)=5/5
⇒r+θ=nπ+(-1)^n(π/2)
⇒x=nπ+(-1)^n(π/2)-tan^(-1)(4/3)
Hence the general solutions for 3sinx+4cosx=5 is nπ+(-1)^n(π/2)-tan^(-1)(4/3)
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?