Prove that (cosA+sinA)/(cosA-sinA)-(cosA-sinA)/(cosA+sinA)=2tan2A
August 28, 2021
Steps to prove (cosA+sinA)/(cosA-sinA)-(cosA-sinA)/(cosA+sinA)=2tan2A
Take L.H.S
=(cosA+sinA)/(cosA-sinA)-(cosA-sinA)/(cosA+sinA)
[Take L.C.M]
={(cosA+sinA)^2-(cosA-sinA)^2}/(cosA-sinA)(cosA+sinA)
=(cos^2A+sin^2A+2cosA.sinA-cos^2A-sin^2A+2cosA.sinA)/(cos^2A-sin^2A)
=4sinA.cosA/cos2A
=2(2sinA.cosA)/cos2A
[2sinA.cosA=sin2A]
=2(sin2A/cos2A)
=2tan2A
=R.H.S
Hence (cosA+sinA)/(cosA-sinA)-(cosA-sinA)/(cosA+sinA)=2tan2A is proved.
Detail Information:-
Similar Questions for you
Don't Get Panic Ask Any Doubt or Any Questions ?