If sinθ+sinΦ=a and cosθ+cosΦ=b then show that bsin(θ+Φ)/2+acos(θ+Φ)/2=0
August 18, 2021
Steps to solve
If sinθ+sinΦ=a and cosθ+cosΦ=b then show that bsin(θ+Φ)/2+acos(θ+Φ)/2=0
sinθ+sinΦ=a----(I)
cosθ+cosΦ=b-----(II)
Dividing equation(I)&(II)
⇒sinθ+sinΦ/cosθ+cosΦ=a/b
⇒{2.sin(θ+Φ)/2.cos(θ-Φ)/2}/{2.cos(θ+Φ)/2.cos(θ-Φ)/2}=a/b
⇒{sin(θ+Φ)/2}/{cos(θ+Φ)/2}=a/b
⇒bsin(θ+Φ)/2+acos(θ+Φ)/2=0
Hence if sinθ+sinΦ=a and cosθ+cosΦ=b then bsin(θ+Φ)/2+acos(θ+Φ)/2=0 proved
Detail Information:-
Similar questions for you:-
Don't Get Panic Ask Any Doubt or Any Questions ?