Prove that sinθ+sin3θ+sin5θ+sin7θ/cosθ+cos3θ+cos5θ+cos7θ=tan4θ
August 28, 2021
Steps to prove sinθ+sin3θ+sin5θ+sin7θ/cosθ+cos3θ+cos5θ+cos7θ=tan4θ
Take L.H.S
=sinθ+sin3θ+sin5θ+sin7θ/cosθ+cos3θ+cos5θ+cos7θ
=sinθ+sin7θ+sin3θ+sin5θ/cosθ+cos7θ+cos3θ+cos5θ
= {2.sin(θ+7θ)/2.cos(θ-7θ)/2+2.sin(3θ+5θ)/2.cos(3θ-5θ)/2}/{2.cos(θ+7θ)/2.cos(θ-7θ)/2+2.cos(3θ+5θ)/2.cos(3θ-5θ)/2}
={2.sin4θ.cos(-3θ)+2.sin4θ.cos(-θ)}/{2.cos4θ.cos(-3θ)+2.cos4θ.cos(-θ)}
=2sin4θ{cos(-3θ)+cos(-θ)}/2cos4θ{cos(-3θ)+cos(-θ)}
=sin4θ/cos4θ
=tan4θ
=R.H.S
Hence sinθ+sin3θ+sin5θ+sin7θ/cosθ+cos3θ+cos5θ+cos7θ=tan4θ is proved.
Detail Information's:-
Similar Questions for you:-
Don't Get Panic Ask Any Doubt or Any Questions ?