Prove that cos7α+cos3α-cos5α-cosα/sin7α-sin3α-sin5α+sinα=cot2α
August 28, 2021
Steps to prove cos7α+cos3α-cos5α-cosα/sin7α-sin3α-sin5α+sinα=cot2α
Take L.H.S
=cos7α+cos3α-cos5α-cosα/sin7α-sin3α-sin5α+sinα
=cos7α-cosα+cos3α-cos5α/sin7α-sinα-(sin3α+sin5α)
={-2.sin(7α+α)/2.sin(7α-α)+2.sin(3α+5α)/2.sin(5α-3α)/2}/{2.sin(7α+α)/2.cos(7α-α)-2.sin(3α+5α)/2.cos(5α-3α)/2}
=(-2.sin4α.sin3α+2.sin4α.sinα)/(2.sin4α.cos3α-2.sin4α.cosα)
=(sin3α-sinα)/(cosα-cos3α)
={2.cos(3α+α)/2.sin(3α-α)/2}/{2.sin(3α+α)/2.sin(3α-α)/2}
=cos2α/sin2α
=cot2α
=R.H.S
Hence cos7α+cos3α-cos5α-cosα/sin7α-sin3α-sin5α+sinα=cot2α is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?