Prove that cos^6A-sin^6A=cos2A{1-(1/4)sin^2A}
August 31, 2021
Steps to prove cos^6A-sin^6A=cos2A{1-(1/4)sin^2A}
Take L.H.S
=cos^6A-sin^6A
=(cos^2A)^3-(sin^2A)^3
[a^3-b^3=(a-b)(a^2+b^2+ab)]
=(cos^2A-sin^2A){(cos^2A)^2+(sin^2A)^2+sin^2A.cos^2A}
=cos2A{(cos^2A+sin^2A)^2-2sin^2A.cos^2A+sin^2A.cos^2A}
=cos2A{1-sin^2A.cos^2A}
[Multiply 4 and divide 1/4 at sin^2A.cos^2A]
=cos2A{1-(1/4)4sin^2A.cos^2A}
=cos2A{1-(1/4)sin^2A}
Hence cos^6A-sin^6A=cos2A{1-(1/4)sin^2A} is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?