Prove that sin2A+sin5A-sinA/cos2A+cos5A+cosA=tan2A
August 09, 2021
Steps to prove sin2A+sin5A-sinA/cos2A+cos5A+cosA=tan2A
Take L.H.S sin2A+sin5A-sinA/cos2A+cos5A+cosA
= sin2A+sin5A-sinA/cos2A+cos5A+cosA
= sin2A+{2cos(5A+A)/2 . sin(5A-A)/2} / cos2A+{2cos(5A+A)/2 . cos(5A-A)
[ sinC-sinD=2.cos(C+D)/2.sin(C-D)/2]
[cosC+cosD=2.cos(C+D)/2.cos(C-D)/2]
= sin2A+2cos3A.sin2A/cos2A+2cos3A.cos2A
= sin2A(1+2cos3A)/cos2A(1+2cos3A)
= sin2A/cos2A
= tan2A
= R.H.S
Detail Information:
Similar questions for you:
Don't Get Panic Ask Any Doubt or Any Questions ?