If tanθ=b/a than the value of acos2θ+bsin2θ
August 18, 2021
Steps to find the value of acos2θ+bsin2θ
We know that cos2θ=(1-tan^2θ)/(1+tan^2θ)
and sin2θ=2tanθ/(1-tan^2θ)
=a.(1-tan^2θ)/(1+tan^2θ)+b.2tanθ/(1-tan^2θ)
Put tanθ=b/a
=a.{1-(b/a)^2}/{1+(b/a)^2}+b.2(b/a)/{1+(b/a)^2}
=(a^3-ab^2)/(a^2+b^2)+2ab^2/(a^2+b^2)
=(a^3-ab^2+2ab^2)/(a^2+b^2)
=(a^3+ab^2)/(a^2+b^2)
=a(a^2+b^2)/(a^2+b^2)
=a
Hence If tanθ=b/a than the value of acos2θ+bsin2θ is a.
Detail Information:-
Similar questions for you:-
Don't Get Panic Ask Any Doubt or Any Questions ?