If tanθ=(asinx+bsiny)/(acosx+bcosy) then show that asin(θ–x)+bsin(θ-y)=0

Steps to solve 
if tanθ=(asinx+bsiny)/(acosx+bcosy) then show that asin(θ–x)+bsin(θ-y)=0


⇒tanθ=(asinx+bsiny)/(acosx+bcosy)

⇒sinθ/cosθ=(asinx+bsiny)/(acosx+bcosy)

⇒sinθ.acosx+sinθ.bcosy=cosθ.asinx+cosθ.bsiny

⇒sinθ.acosx+sinθ.bcosy-cosθ.asinx-cosθ.bsiny=0

⇒a(sinθ.cosx-cosθ.sinx)+b(sinθ.cosy-cosθ.siny)=0

[sin(A-B)=sinAcosB-cosA.sinB]

⇒asin(θ–x)+bsin(θ-y)=0

Hence If tanθ=(asinx+bsiny)/(acosx+bcosy) then asin(θ–x)+bsin(θ-y)=0 proved

Detail Information:-

If tanθ=(asinx+bsiny)/(acosx+bcosy) then show that asin(θ–x)+bsin(θ-y)=0

Similar questions for you:-

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.