If tanθ=(asinx+bsiny)/(acosx+bcosy) then show that asin(θ–x)+bsin(θ-y)=0
August 18, 2021
Steps to solve
if tanθ=(asinx+bsiny)/(acosx+bcosy) then show that asin(θ–x)+bsin(θ-y)=0
⇒tanθ=(asinx+bsiny)/(acosx+bcosy)
⇒sinθ/cosθ=(asinx+bsiny)/(acosx+bcosy)
⇒sinθ.acosx+sinθ.bcosy=cosθ.asinx+cosθ.bsiny
⇒sinθ.acosx+sinθ.bcosy-cosθ.asinx-cosθ.bsiny=0
⇒a(sinθ.cosx-cosθ.sinx)+b(sinθ.cosy-cosθ.siny)=0
[sin(A-B)=sinAcosB-cosA.sinB]
⇒asin(θ–x)+bsin(θ-y)=0
Hence If tanθ=(asinx+bsiny)/(acosx+bcosy) then asin(θ–x)+bsin(θ-y)=0 proved
Detail Information:-
Similar questions for you:-
Don't Get Panic Ask Any Doubt or Any Questions ?