If sinθ=sin2θ then find the principal solution of θ
September 24, 2021
Steps to solve If sinθ=sin2θ then find the principal solution of θ
sinθ=sin2θ
⇒θ=nπ+(-1)^n(2θ)
⇒θ-(-1)^n(2θ)=nπ
⇒θ{1-(-1)^n(2)}=nπ
⇒θ=nπ/1-(-1)^n(2)
Put n=0
⇒θ=0.π/1-(-1)^0(2)=0
Put n=1
⇒θ=1.π/1-(-1)^1(2)=π/3
Put n=2
⇒θ=2.π/1-(-1)^2(2)=-2π
Put n=3
⇒θ=3.π/1-(-1)^3(2)=3π
Put n=5
⇒θ=5.π/1-(-1)^5(2)=5π/3
Hence the principal solution for sinθ=sin2θ is 0, π/3, -2π, 3π, 5π/3
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?