If sinA+sinB=a and cosA+cosB=b than prove that sin(A+B)=2ab/(b^2+a^2)
September 02, 2021
Steps to prove sin(A+B)=2ab/(b^2+a^2)
sinA+sinB=a-(I)
cosA+cosB=b-(II)
Dividing equation (I) and (II)
⇒(sinA+sinB)/(cosA+cosB)=a/b
⇒{2sin(A+B)/2.cos(A-B)/2}/{2cos(A+B)/2.cos(A-B)/2}=a/b
⇒{sin(A+B)/2}/cos(A+B)/2}=a/b
⇒tan(A+B)/2=a/b
Take L.H.S
=sin(A+B)
=sin2(A+B)/2
={2tan(A+B)/2}/{1+tan^2(A+B)/2}
={2(a/b)}/{(b^2+a^2)/b^2}
=2ab/(b^2+a^2)
=R.H.S
Hence sin(A+B)=2ab/(b^2+a^2) is proved.
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?