Find the general solution for 3sinx+4cosx=5
September 29, 2021
Steps to solve Find the general solution for 3sinx+4cosx=5
Put 3=rcosθ and 4=rsinθ
⇒3^2+4^2=r^2.cos^2θ+r^2.sin^2θ
⇒25=r^2(cos^2θ+sin^2θ)
⇒r^2=25
⇒r=±5
Again
⇒(4/3)=(rsinθ/rcosθ)
⇒tanθ=(4/3)
⇒θ=tan^(-1)(4/3)
From question
⇒rcosθ.sinx+rsinθ.cosx=5
⇒r(cosθ.sinx+sinθ.cosx)=5
⇒5sin(x+θ)=5
⇒sin(x+θ)=1
⇒sin(x+θ)=sin(π/2)
⇒x+θ=π/2
⇒x=nπ+(-1)^n(π/2)-tan^(-1)(4/3)
Hence the general solution for 3sinx+4cosx=5 is nπ+(-1)^n(π/2)-tan^(-1)(4/3)
Detail Information:-
Similar Questions For You:-
Don't Get Panic Ask Any Doubt or Any Questions ?