Prove that tanθ(1+sec2θ)=tan2θ
August 13, 2021
Steps to prove tanθ(1+sec2θ)=tan2θ
Take L.H.S tanθ(1+sec2θ)
=tanθ(1+sec2θ)
=tanθ(1+1/cos2θ)
=tanθ{1+(1+tan^2θ)/(1-tan^2θ)}
=tanθ(1-tan^2θ+1+tan^2θ)/(1-tan^2θ)
=tanθ(2/1-tan^2θ)
=2tanθ/1-tan^2θ
=tan2θ
=R.H.S
Hence tanθ(1+sec2θ)=tan2θ is proved.
Detail Information:-
Similar questions for you:-
Hy
ReplyDeleteDon't Get Panic Ask Any Doubt or Any Questions ?