Prove that sinB/sinA=sin(2A+B)/sinA-2cos(A+B)
August 09, 2021
Steps to Prove sinB/sinA=sin(2A+B)/sinA-2cos(A+B)
Take R.H.S sin(2A+B)/sinA-2cos(A+B)
=sin(2A+B)-2cos(A+B).sinA/sinA
=sin(2A+B)-{sin(A+B+A)-sin(A+B-A)}/sinA [2.cosC.sinD=sin(C+D)-sin(C-D)]
=sin(2A+B)-{sin(2A+B)-sinB}/sinA
=sin(2A+B)-sin(2A+B)+sinB/sinA
=sinB/sinC= L.H.S
∴ Hence we proved that sinB/sinA=sin(2A+B)/sinA-2cos(A+B)
Detailed Informations:-
Similar Questions for you:
Don't Get Panic Ask Any Doubt or Any Questions ?